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Enhancing Pure-Pixel Identification Performance via Preconditioning∗

Nicolas Gillis† and Wing-Kin Ma‡

Abstract. In this paper, we analyze different preconditionings designed to enhance robustness of pure-pixel
search algorithms, which are used for blind hyperspectral unmixing and which are equivalent to
near-separable nonnegative matrix factorization algorithms. Our analysis focuses on the successive
projection algorithm (SPA), a simple, efficient, and provably robust algorithm. Recently, a provably
robust preconditioning was proposed by Gillis and Vavasis [SIAM J. Optim., 25 (2015), pp. 677–
698] which requires the resolution of a semidefinite program (SDP). Since solving the SDP in high
precisions can be time consuming, we generalize the robustness analysis to approximate solutions
of the SDP showing that a high accuracy solution is not crucial for robustness, paving the way for
faster preconditionings. This first contribution also allows us to provide a robustness analysis for
two other preconditionings. The first one is prewhitening, which can be interpreted as an optimal
solution of the same SDP with additional constraints. We analyze the robustness of prewhitening,
which allows us to characterize situations in which it performs competitively with the SDP-based
preconditioning. The second one is based on SPA itself and can be interpreted as an optimal solution
of a relaxation of the SDP. It is extremely fast when competing with the SDP-based preconditioning
on several synthetic data sets.

Key words. hyperspectral unmixing, pure-pixel search, preconditioning, prewhitening, successive projection
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1. Introduction. In this paper, we analyze a blind unmixing problem referred to as near-
separable nonnegative matrix factorization (NMF). Our main motivation comes from blind
hyperspectral unmixing (blind HU), which aims at recovering the spectral signatures of the
constitutive materials present in a hypespectral image, called endmembers, along with their
abundances in each pixel. Under the linear mixing model, the spectral signature of a pixel is
equal to a linear combination of the spectral signatures of the endmembers where the weights
correspond to the abundances. More formally, letting X ∈ R

m×n
+ represent a hyperspectral

image with m wavelengths and n pixels, we have, in the noiseless case,

X(:, j) =

r∑
k=1

W (:, k)H(k, j) ∀j,
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where X(:, j) is the spectral signature of the jth pixel, W (:, k) is the spectral signature of
the kth endmember, and H(k, j) is the abundance of the kth endmember in the jth pixel so
that H ≥ 0 and ||H(:, j)||1 =

∑r
i=1 |H(i, j)| = 1 for all j (abundance sum-to-one constraint).

Note that blind HU is closely related to NMF [32, 25], which aims at finding the best possible
factorization of a nonnegative matrix X ≈ WH, where W and H are nonnegative matrices.
The only difference is the abundance sum-to-one constraint.

In blind HU, the so-called pure-pixel assumption plays a significant role. It is defined as
follows. If for each endmember there exists a pixel containing only that endmember, that is,
if for all 1 ≤ k ≤ r there exists j such that X(:, j) = W (:, k), then the pure-pixel assumption
holds. In that case, the matrix X has the following form:

X = W [Ir,H
′]Π, with H ′ ≥ 0, ||H ′(:, j)||1 = 1 ∀j,

and Π being a permutation. This implies that the columns of X are convex combinations
of the columns of W , and hence blind HU under the linear mixing model and the pure-pixel
assumption reduces to identifying the vertices of the convex hull of the columns of X; see,
e.g., [7, 14, 27] and the references therein. This problem is known to be efficiently solvable [4].
In the presence of noise, the problem becomes more difficult, and several provably robust
algorithms have been proposed recently, for example the successive projection algorithm to
be described in section 1.1. Note that, in the NMF literature, the pure-pixel assumption
is referred to as the separability assumption [4], which has also been used successfully for
text mining; see, e.g., [24, 3]. NMF under the separability assumption in the presence of
noise is referred to as near-separable NMF; see, e.g., [16] and the references therein. Near-
separable NMF is closely related to the more general archetypal analysis [13] that looks for
basis elements (that is, columns of W ) that are mixtures of data points; see also [11] and the
references therein for recent developments.

Therefore, in this paper, we will assume that the matrix corresponding to the hyperspectral
image has the following form (in the noiseless case).

Assumption 1 (separable matrix). The matrix X is separable if X = WH ∈ R
m×n, where

W ∈ R
m×r and H = [Ir,H

′]Π ∈ R
r×n
+ , with the sum of the entries of each column of H ′ being

at most one, that is, ||H(:, j)||1 ≤ 1 for all j, and Π being a permutation.
Note that we have relaxed the assumption ||H(:, j)||1 = 1 for all j to ||H(:, j)||1 ≤ 1 for

all j; this allows, for example, different illumination conditions among the pixels in the image.
Note also that, in the context of separable NMF, the sum-to-one constraint ||H(:, j)||1 = 1 for
all j can be made without loss of generality by normalizing each column of the input matrix
M so that their entries sum to one; see, e.g., [10, 4].

1.1. Successive projection algorithm. The successive projection algorithm (SPA) is a
simple but fast and robust pure-pixel search algorithm; see Algorithm SPA.

At each step of the algorithm, the column of the input matrix X̃ with maximum �2
norm is selected, and then X̃ is updated by projecting each column onto the orthogonal
complement of the columns selected so far. SPA is extremely fast, as it can be implemented
in 2mnr + O(mr2) operations [18]. SPA was first introduced in [2] and is closely related to
other algorithms, such as automatic target generation process (ATGP), successive simplex
volume maximization (SVMAX), and vertex component analysis (VCA); see the discussion
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Algorithm SPA – Successive Projection Algorithm [2]

Input: Matrix X̃ = X +N with X satisfying Assumption 1, rank r.
Output: Set of r indices K such that X̃(:,K) ≈W .

1: Let R = X̃, K = {}, k = 1.
2: while k ≤ r and R �= 0 do
3: p = argmaxj ||R:j ||2.
4: R =

(
I − R:pRT

:p

||R:p||22

)
R.

5: K = K ∪ {p}.
6: k = k + 1.
7: end while

in [27]. What makes SPA distinguishingly interesting is that it is provably robust against
noise [18].

Theorem 1.1 (see [18, Thm. 3]). Let X̃ = X +N , where X satisfies Assumption 1, W has

full column rank, and N is noise with maxj ||N(:, j)||2 ≤ ε. If ε ≤ O( σmin(W )√
rκ2(W )

)
, then SPA

identifies the columns of W up to error O (ε κ2(W )
)
; that is, the index set K identified by

SPA satisfies

max
1≤j≤r

min
k∈K

∥∥∥W (:, j) − X̃(:, k)
∥∥∥
2
≤ O (ε κ2(W )

)
,

where κ(W ) = σmax(W )
σmin(W ) is the condition number of W , and ||x||2 =

√∑n
i=1 x

2
i for x ∈ R

n.

1.2. Preconditioning. If a matrix X satisfying Assumption 1 is premultiplied by a matrix
Q, it still satisfies Assumption 1, where W is replaced with QW . Since pure-pixel search
algorithms are sensitive to the conditioning of matrix W , it would be beneficial to find a
matrix Q that reduces the conditioning of W . In particular, the robustness result of SPA
(Theorem 1.1) can be adapted when the input matrix is premultiplied by a matrix Q:

Corollary 1.2. Let X̃ = X +N , where X satisfies Assumption 1, W has full column rank,
and N is noise with maxj ||N(:, j)||2 ≤ ε; and let Q ∈ R

p×m (p ≥ r). If QW has full column
rank and

ε ≤ O
(

σmin(W )√
rκ3(QW )

)
,

then SPA applied on matrix QX̃ identifies indices corresponding to the columns of W up to
error O (ε κ(W )κ(QW )3

)
.

Proof. This result follows directly from [19, Cor. 1]. In fact, in [19, Cor. 1], the result is
proved for

ε ≤ O
(

σmin(QW )√
rσmax(Q)κ2(QW )

)
with error up to O (ε κ(Q)κ(QW )2

)
. Since

σmin(QW )

σmax(Q)
≥ σmin(QW )

σmax(QW )σmax(W−1)
=

σmin(W )

κ(QW )
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and
κ(Q) = κ(QWW−1) ≤ κ(QW )κ(W−1) = κ(QW )κ(W ),

the proof is complete.
Note that Corollary 1.2 does not simply amount to replacing W by QW in Theorem 1.1

because the noise N is also premultiplied by Q. Note also that, in view of Theorem 1.1,
preconditioning is beneficial for any Q such that κ(QW )3 ≤ κ(W ).

1.2.1. Semidefinite program–based preconditioning. Assume that m = r (the problem
can be reduced to this case using noise filtering; see section 3) and that W is full rank. An
optimal preconditioning would be Q = W−1 so that QW = Ir would be perfectly conditioned,
that is, κ(QW ) = 1. In particular, applying Corollary 1.2 with Q = W−1 gives the following

result: if ε ≤ O(σmin(W )√
r

)
, then SPA applied on matrix QX̃ identifies indices corresponding

to the columns of W up to error O (εκ(W )). This is a significant improvement compared to
Theorem 1.1, especially for the upper bound on the noise level: the term κ(W )2 disappears
from the denominator. For hyperspectral images, κ(W ) can be rather large, as spectral
signatures often share similar patterns. Note that the bound on the noise level is essentially
optimal for SPA since ε ≥ Ω(σmin(W )) would allow the noise to make the matrix W rank
deficient [19].

Of course, W−1 is unknown; otherwise the problem would be solved. However, it turns out
that it is possible to compute W−1 approximately (up to orthogonal transformations, which
do not influence the conditioning) even in the presence of noise using the minimum volume
ellipsoid centered at the origin containing all columns of X̃ [19]. An ellipsoid E centered at the
origin in R

r is described via a positive definite matrix A ∈ S
r
++: E = {x ∈ R

r|xTAx ≤ 1}. The
volume of E is equal to det(A)−1/2 times the volume of the unit ball in dimension r. Therefore,
given a matrix X̃ ∈ R

r×n of rank r, we can formulate the minimum volume ellipsoid centered
at the origin and containing the columns x̃j for all j of matrix X̃ as follows:

A∗ = argmax
A∈Sr+

det(A) such that x̃j
TAx̃j ≤ 1 ∀j.(1.1)

This problem can be formulated as a semidefinite program (SDP) [8, p. 222]. It was shown
in [19] that

• in the noiseless case (that is, N = 0), the optimal solution A∗ of (1.1) is given by
(WW T )−1, and hence factoring A∗ allows one to recover W−1 (up to orthogonal
transformations), and that

• in the noisy case, the optimal solution of (1.1) is close to (WW T )−1 and hence leads
to a good preconditioning for SPA.

More precisely, the following robustness result was proved.
Theorem 1.3 (see [19, Thm. 3]). Let X̃ = X + N , where X satisfies Assumption 1 with

m = r, W has full column rank, and N is noise with maxj ||N(:, j)||2 ≤ ε. If ε ≤ O( σmin(W )
r
√
r

)
,

then SDP-based preconditioned SPA identifies a subset K so that X̃(:,K) approximates the
columns of W up to error O (ε κ(W )).

In case m > r, it was proposed to first replace the data points by their projections onto
the r-dimensional linear subspace obtained with the SVD (that is, use a linear dimensionality
reduction technique for noise filtering; see also section 3); see Algorithm SDP-Prec.
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Algorithm SDP-Prec – SDP-based Preconditioning [19]

Input: Matrix X̃ = X +N with X satisfying Assumption 1, rank r.
Output: Preconditioner Q.

1: [Ur,Σr, Vr] = rank-r truncated SVD(X̃).
2: Let X̃ ← ΣrV

T
r and solve (1.1) to get A∗.

3: Factorize A∗ = P TP (e.g., Cholesky decomposition).
4: Q = PUT

r .

Algorithm SDP-Prec first requires the truncated SVD, which can be computed in O(mnr)
operations. It then requires the solution of a particular SDP (O(r2) variables and n con-
straints—note that n ≥ r; otherwise the optimal value of the problem is unbounded) that can
be solved in O(n3.5 log(n/ε)) operations to obtain an ε-solution [23] (ε is a relative measure of
nonoptimality); see also [34] and the discussion therein for more details. However, in practice,
effective active set methods can be used to solve large-scale problems [34]: in fact, one can

keep only r(r+1)
2 constraints from (1.1) to obtain an equivalent problem [22].

Note that Mizutani [28] solves the same SDP, but for another purpose, namely to pre-
process the input matrix by removing the columns which are not on the boundary of the
minimum volume ellipsoid.

1.3. Motivation and contribution of the paper. Although the pure-pixel assumption is
rather strong and not perfectly satisfied in many scenarios (because of low resolution, mixed
materials, variability across the image, nonlinearities, etc.), pure-pixel search algorithms are
still extremely useful and widely used in practice because they are fast, simple to use, and
are able to recover endmembers in many situations. They can also be used, for example,
as initialization strategies for more sophisticated techniques. Hence it is important to gain
theoretical insights on these techniques to improve their understanding and work towards more
effective variants. The focus of this paper is on a theoretical analysis of the robustness to noise
of several preconditionings for pure-pixel search algorithms or, equivalently, for near-separable
NMF algorithms.

The SDP-based preconditioning described in section 1.2 is appealing in the sense that it
builds an approximation of W−1 whose error is provably bounded by the noise level. This is
a somewhat ideal solution but can be computationally expensive to obtain since it requires
the resolution of an SDP. Hence, a natural move is to consider computationally cheaper
preconditioning alternatives. The contribution of this paper is threefold:

1. In section 2, we analyze the robustness of preconditionings obtained using approximate
solutions of (1.1) and prove the following (see Theorem 2.6 for all the details): under
the same assumptions as in Theorem 1.3 but using a preconditioning obtained with
a feasible point of (1.1) whose objective function value is some multiplicative factor
α away from the optimal value (which we refer to as an α-approximate solution)

and if ε ≤ O(min
(
1
r , α

3/2
)σmin(W )√

r

)
, then SPA identifies indices corresponding to the

columns of W up to error O(εκ(W )α−3/2
)
. This shows that any good feasible point

of (1.1) provides a reasonable preconditioning, which (i) gives a theoretical motivation
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for developing less accurate but faster solvers for (1.1), and (ii) will be useful for
analyzing two other preconditionings described in sections 3 and 4.

2. In section 3, we analyze the robustness of prewhitening, a standard preconditioning
technique in blind source separation. We try to understand under which conditions
prewhitening can be as good as the SDP-based preconditioning; in fact, prewhiten-
ing was shown to perform very similarly to the SDP-based preconditioning on some
synthetic data sets [19]. Prewhitening corresponds to a solution of (1.1) with ad-
ditional constraints, and hence the robustness of prewhitened SPA follows from the
result above (section 3.2). However, this result is not tight, and we provide a tight ro-
bustness analysis of prewhitening (section 3.3). We also provide a robustness analysis
of prewhitening under a standard generative model (section 3.4).

3. In section 4, we analyze a preconditioning based on SPA itself. The idea was proposed
in [17], where the resulting method was found to be extremely fast and, as opposed
to prewhitening, to perform perfectly in the noiseless case and not be affected by
the abundances of the different endmembers. Moreover, we are able to improve the
theoretical bound on the noise level allowed by SPA by a factor κ(W ) using this
preconditioning.

Finally, in section 5, we summarize our theoretical findings in Table 1 and illustrate these
results on synthetic data sets. In particular, we show that prewhitening and the SPA-based
preconditioning perform competitively with the SDP-based preconditioning while showing
much better runtime performance in practice.

2. Analysis of approximate SDP preconditioning. In this section, we analyze the effect
of using an approximate solution A of (1.1) instead of the optimal one A∗ for preconditioning
matrix X̃ . We will say that A is an α-approximate solution of (1.1) for some 0 < α ≤ 1 if A
is a feasible point of (1.1), that is, A ∈ S

r
+ and x̃Tj Ax̃j ≤ 1 for all j, and

det(A) ≥ α det(A∗),

where A∗ is the optimal solution of (1.1). Letting A = QQT , analyzing the effect of Q as
a preconditioning reduces to showing that QW is well-conditioned, that is, to upper bound
κ(QW ), which is equivalent to bounding κ(W TAW ) since κ(W TAW ) = κ(QW )2. In fact, if
κ(QW ) can be bounded, the robustness of preconditioned SPA follows from Corollary 1.2.

In [19], a change of variables is performed on the SDP (1.1) using A = W−TCW−1 to
obtain the following equivalent problem:

C∗ = argmax
C∈Sr+

det(C) det(W )−2 such that x̃Tj
(
W−TCW−1

)
x̃j ≤ 1 ∀ j.(2.1)

Since our goal is to bound κ(W TAW ) and W TAW = C, it is equivalent to bound κ(C).
It was shown in [19] that, for sufficiently small noise level ε, κ(W TA∗W ) = κ(C∗) = O(1),
which implies the robustness of SDP-preconditioned SPA; see Theorem 1.3. In this section,
we analyze (2.1) directly and will use the following assumption.

Definition 2.1. The matrix C is an α-approximate point of (2.1) for some 0 < α ≤ 1; that
is, C is a feasible point of (2.1) and

det(C) ≥ α det(C∗).
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Note that C is an α-approximate solution of (2.1) if and only if A = W−TCW−1 is an
α-approximate solution of (1.1). In fact, det(W−TCW−1) = det(W−T ) det(C) det(W−1).

The main result of this section is therefore to show that any α-approximate solution of
(2.1) is well-conditioned. More precisely, we show in Theorem 2.5 that, for a sufficiently small
noise level ε,

κ(C) ≤ 12

α
.

This will imply, by Corollary 1.2, that preconditioned SPA using an approximate solution of
(1.1) is robust to noise, given that α is sufficiently close to one; see Theorem 2.6.

2.1. Bounding κ(C). It is interesting to notice that the case r = 1 is trivial since C∗ is a
scalar and thus has κ(C) = 1 (in fact, all columns of X̃ are multiples of the unique column of
W ∈ R

m×1). Otherwise, since κ(C) ≥ 1, we need only to provide an upper bound for κ(C).
The steps of the proof are the following:

• Derive a lower bound for det(C) (Lemma 2.2).
• Provide an upper bound of tr(C) (Lemma 2.3).
• Combine the two bounds above to bound κ(C). In fact, we prove in Lemma 2.4 that

the condition number κ(C) of an r-by-r matrix C with tr(C) ≤ β and det(C) ≥ γ can
be bounded above; see (2.3).

The lower bound for det(C) and the upper bound for tr(C) follow directly from results in [19].
Lemma 2.2. If X̃ = W + N , where X satisfies Assumption 1 with m = r, then any α-

approximate solution C of (2.1) satisfies

(2.2) det(C) ≥ α

(
1 +

ε

σmin(W )

)−2r

.

Proof. In [19, Lemma 1], it was proved that the optimal solution C∗ of (2.1) satisfies

det(C∗) ≥
(
1 +

ε

σmin(W )

)−2r

.

Hence, the result follows directly from Definition 2.1.
Lemma 2.3. If X̃ = W +N , where X satisfies Assumption 1 with m = r, and

ε ≤ σmin(W )

8r
√
r

,

then any feasible point C of (2.1) satisfies tr(C) ≤ r + 1.
Proof. See Lemma 2 and the proof of Lemma 3 in [18].
Lemma 2.4. The optimal value

κ∗ = max
λ∈Rr

λ1

λr
such that

r∑
i=1

λi ≤ β,

r∏
i=1

λi ≥ γ, and λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0,

where β ≥ r and 0 < γ ≤ 1 is given by

(2.3) κ∗ =
1 +

√
1− γ

(
r
β

)r
1−
√

1− γ
(

r
β

)r .
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Proof. The proof is given in Appendix A.
Theorem 2.5. If X̃ = X + N , where X satisfies Assumption 1 with m = r ≥ 2 and

maxj ||N(:, j)||2 ≤ ε ≤ σmin(W )
8r

√
r

, then

κ(C) ≤ 12

α
,

where C is an α-approximate solution of (2.1).
Proof. By Lemma 2.2, we have

det(C) ≥ α

(
1 +

ε

σmin(W )

)−2r

≥ α

(
1 +

1

8r
√
r

)−2r

≥ α

(
1 +

1

64

)−4

︸ ︷︷ ︸
=η

= αη,

where the third inequality above is obtained by the fact that
(
1 + 1

8r
√
r

)−2r
is increasing in

r for r ≥ 1. Also, by Lemma 2.3, we have tr(C) ≤ r + 1. Combining these results with
Lemma 2.4 (via setting γ = ηα and β = r + 1) yields

κ(C) ≤
1 +

√
1− αη

(
r

r+1

)r
1−
√

1− αη
(

r
r+1

)r ≤ 1 +
√

1− α
3

1−√1− α
3

,

where the second inequality above is obtained by the fact that
(

r
r+1

)r
is nonincreasing in r

and its limit is given by

lim
r→∞

(
r

r + 1

)r

= lim
r→∞

(
1− 1

r + 1

)r

=
1

e
= 0.3679

and that η
e =

(1+ 1
64)

−4

e ≥ 1
3 . Finally, since the function 1+y

1−y is increasing for 0 ≤ y < 1 and√
1− x ≤ 1− x

2 for all 0 ≤ x ≤ 1, we have

1 +
√

1− α
3

1−√1− α
3

≤ 1 + 1− α
6

1− 1 + α
6

≤ 12

α
− 1.

2.2. Robustness of SPA preconditioned with an approximate SDP solution. The upper
bound on κ(C) (Theorem 2.5) proves that the preconditioning generates a well-conditioned
near-separable matrix for α sufficiently close to one. Hence any good feasible point of (1.1)
allows us to obtain more robust near-separable NMF algorithms. In particular, we have the
following result for SPA.

Theorem 2.6. Let X̃ = X + N , where X satisfies Assumption 1 with m = r, W has full
rank, and the noise N satisfies maxj ||N(:, j)||2 ≤ ε. Let also Q ∈ R

r×r be such that A = QTQ,
where A is an α-approximate solution of (1.1). If

ε ≤ O
(
min

(
1

r
, α3/2

)
σmin(W )√

r

)
,
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then SPA applied on matrix QX̃ identifies indices corresponding to the columns of W up to
error O(εκ(W )α−3/2

)
.

Proof. This follows from Corollary 1.2 and Theorem 2.5. Let Q be such that A = QTQ,
where A is an α-approximate solution of (1.1). Since C = W TAW is an α-approximate
solution of (2.1), we have that

(QW )TQW = W TQTQW = W TAW = C.

Using σi(QW ) =
√

λi(C) for all i and by Theorem 2.5, for which we need to assume that

ε ≤ O(σmin(W )
r
√
r

)
, we further obtain

κ(QW ) ≤
√
12α−1 = 2

√
3α−1/2.

Applying the above bound to Corollary 1.2 leads to the desired result: ε ≤ O( σmin(W )
κ3(QW )

√
r

)
leads

to an error proportional to O (εκ(W )κ3(QW )
)
.

Theorem 2.6 shows that the SDP-based preconditioning does not require a high accuracy
solution of the SDP. For example, compared to the optimal solution, any 1

2 -approximate

solution would not change the upper bound on the noise level for r ≥ 3 (since 0.53/2 ≥ 1/3)
while it would increase the error by a factor smaller than three. This gives a theoretical
motivation for developing less accurate but faster solvers for (1.1). For example, one could
use the first-order proximal point algorithm proposed in [35] or the modified Frank–Wolfe
algorithm in [1], with cheaper per-iteration cost (but slower convergence than interior point
methods). One could also use active-set methods with an early termination criterion: usually,
keeping a well-chosen subset of the data points already leads to a good feasible point of (1.1),

up to a scaling factor. In fact, as mentioned in the introduction, only r(r+1)
2 constraints are

actually necessary [22]. Moreover, keeping only dr constraints already allows us to obtain
an approximate solution with optimality guarantees that can be computed in O(dr3n) [5,
Thm. 3.1]: for example, keeping 4r constraints leads to a 1/9r-approximate solution that can
be computed in O(r3n) operations; see also the discussion in [29]. Developing and comparing
the corresponding preconditionings is out of the scope of this paper and is a direction for
further research.

Also, this analysis will allow us to better understand two other preconditionings: prewhiten-
ing (section 3) and SPA-based preconditioning (section 4).

3. Prewhitening. Noise filtering and prewhitening are standard techniques in blind source
separation; see, e.g., [12]. They were used in [19] as a preconditioning for SPA. In this section,
in light of the results from the previous section, we analyze prewhitening as a preconditioning.
We bound the condition number of κ(QW ), where Q is the preconditioner obtained from
prewhitening. In the worst case, κ(QW ) can be large, as it depends on the number of pixels
n. However, under some standard generative model, prewhitening can be shown to be much
more robust.

3.1. Description. Let (Ur,Σr, Vr) ∈ R
m×r × R

r×r × R
n×r be the rank-r truncated SVD

of X̃ = X + N so that X̃r = UrΣrV
T
r is the best rank-r approximation of X̃ with respect

to the Frobenius norm. Assuming that the noiseless data matrix X lives in an r-dimensional
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linear space and assuming Gaussian noise, replacing X̃ with X̃r allows noise filtering. Given
X̃r, prewhitening amounts to keeping only the matrix Vr. Equivalently, it amounts to pre-
multiplying X̃r (or X̃) with Q = Σ−1

r UT
r since

QX̃ =
(
Σ−1
r UT

r

) (
UΣV T

)
=
(
Σ−1
r UT

r

) (
UrΣrV

T
r

)
= QX̃r = V T

r ,

where (U,Σ, V ) is the full SVD of X̃ (recall that U(:, 1:r) = Ur and that the columns of U
and V are orthonormal); see Algorithm NF-PW.

Algorithm NF-PW – Noise Filtering and Prewhitening

Input: Matrix X̃ = X +N with X satisfying Assumption 1, rank r.
Output: Preconditioner Q.

1: [Ur,Σr, Vr] = rank-r truncated SVD(X̃).

2: Q = Σ−1
r UT

r .

In [19], Algorithm NF-PW is used as an heuristic preconditioning and performs similarly to
the SDP-based preconditioning. Algorithm NF-PW requires O(mnr) operations to compute
the rank-r truncated SVD of X̃ .

3.2. Link with the SDP-based preconditioning. For simplicity, let us consider the case
m = r (or, equivalently, assume that noise filtering has already been applied to the data
matrix). In that case, the preconditioner Q given by prewhitening is

Q = Σ−1
r UT

r =
(
X̃X̃T

)−1/2
,

where (.)−1/2 denotes the inverse of the square root of a positive definite matrix, that is,

Q = S−1/2 ⇐⇒ S =
(
QTQ

)−1
(which is unique up to orthogonal transformations). In

fact, for m = r, X̃ = UrΣrV
T
r , and hence X̃X̃T = (UrΣr)(UrΣr)

T . We have the following
well-known result.

Lemma 3.1. Let X̃ ∈ R
r×n be of rank r. Then B∗ =

(
X̃X̃T

)−1
is the optimal solution of

max
B∈Sr+

det(B) such that

n∑
i=1

x̃Tj Bx̃j ≤ r.(3.1)

Moreover, B∗ satisfies x̃Tj B
∗x̃j ≤ 1 for all j.

Proof. Observing that the objective can be replaced with log det(B) and that the constraint
will be active at optimality (otherwise B can be multiplied by a scalar larger than one), any
optimal solution has to satisfy the following first-order optimality conditions:

B−1 = λ

n∑
i=1

x̃j x̃j
T = λX̃X̃T and

n∑
i=1

x̃j
TBx̃j = r,

where λ ≥ 0 is the Lagrangian multiplier. This implies that B∗ = λ−1
(
X̃X̃T

)−1
. We have

n∑
i=1

x̃j
TB∗x̃j = λ−1

〈(
X̃X̃T

)−1
, X̃X̃T

〉
= λ−1tr

((
X̃X̃T

)−1
X̃X̃T

)
= λ−1tr(Ir) = rλ−1.
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The above equation, together with the condition
∑n

i=1 x̃j
TBx̃j = r, implies that λ = 1, which

proves B∗ = (X̃X̃T )−1.

Denoting X̃ = UΣV T the compact SVD of X̃ (V ∈ R
n×r), we obtain x̃j

TBx̃j = ||V (j, :)||22,
which is smaller than one since V has orthogonal columns and n ≥ r.

A robustness analysis of prewhitening follows directly from Theorem 2.6. In fact, by
Lemma 3.1, the matrix (X̃X̃T )−1 is a feasible point of the minimum volume ellipsoid prob-
lem (1.1). Moreover, it is optimal up to a factor r

n : by Lemma 3.1, the optimal solution of

max
D∈Sr+

det(D) such that
n∑

i=1

x̃j
TDx̃j ≤ n

is given by D∗ = n
rB

∗ while the optimal solution A∗ of (1.1) is a feasible point of this problem
(since x̃j

TA∗x̃j ≤ 1 for all j) so that det(B∗) ≤ det(A∗) and

det(A∗) ≤ det(D∗) = det
(n
r
B∗
)
=
(n
r

)r
det(B∗),

and hence

det(B∗) ≥
( r
n

)r
det(A∗).

In other words, B∗ is an
(
r
n

)r
-approximate solution of (1.1). Combining this result with

Theorem 2.6, we obtain the following corollary.

Corollary 3.2. Let X̃ = X +N , where X satisfies Assumption 1 with m = r, W is of full
rank, and the noise N satisfies maxj ||N(:, j)||2 ≤ ε. If

ε ≤ O
(( r

n

) 3r
2 σmin(W )√

r

)
,

prewhitened SPA identifies up to error O(εκ(W )(nr )
3r
2 ) r indices corresponding to the columns

of W .

This bound is rather bad, as n is often large compared to r; for the HU application, we
typically have n ≥ 106 and r � 30. In the next subsections, we provide a tight robustness
analysis of prewhitening and analyze prewhitening under a standard generative model.

3.3. Tight robustness analysis. In this subsection, we provide a better robustness analysis
of prewhitening. More precisely, we provide a tight upper bound for κ(QW ). As before, we
consider only the case m = r. Under Assumption 1, we have

X̃ = X +N = W [Ir,H
′] +N = W

(
[Ir,H

′] +W−1N
)
= W

(
[Ir,H

′] +N ′) = WY,

where we denote N ′ = W−1N and Y = [Ir,H
′] +N ′. Recall that the conditioner Q given by

prewhitening is Q = (X̃X̃T )−1/2. Hence, the condition number of QW will be equal to the
square root of the condition number of Y . In fact,

Q =
(
X̃X̃T

)−1/2
=
(
WY Y TW T

)−1/2
=
(
Y Y T

)−1/2
W−1
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so that κ(QW ) = κ
(
(Y Y T )−1/2

)
= κ (Y ). Therefore, to provide a robustness analysis of

prewhitening, it is sufficient to bound κ (Y ). In the next lemma, we show that κ (Y ) ≤
O(√n− r + 1), which implies that κ(QW ) ≤ O(√n− r + 1) and will lead to an error bound
that is much smaller than that derived in the previous subsection.

Lemma 3.3. Let H ′ ∈ R
r×(n−r) be a nonnegative matrix with ||H ′(:, j)||1 ≤ 1 for all j, and

let N ′ ∈ R
r×n satisfy ||N ′||2 ≤ δ < 1. Then,

κ
(
[Ir,H

′] +N ′) ≤ √1 + n− r + δ

1− δ
.

Proof. Let us first show that

σmin

(
[Ir,H

′]
) ≥ 1 and σmax

(
[Ir,H

′]
) ≤ √1 + n− r.

We have
σp
(
[Ir,H

′]
)2

= λp

(
[Ir,H

′][Ir,H ′]T
)
,

where p = min or max, and note that

[Ir,H
′][Ir,H ′]T = Ir +H ′H ′T .

Using H ′H ′T  0, one easily gets

λmin

(
Ir +H ′H ′T ) ≥ λmin (Ir) = 1.

Also, we have

λmax

(
Ir +H ′H ′T ) ≤ λmax(Ir) + λmax(H

′H ′T ) ≤ 1 + n− r,

as λmax(H
′H ′T ) ≤ tr(H ′H ′T ) and

tr(H ′H ′T ) = tr

(∑
j

H ′(:, j)H ′(:, j)T
)

=
∑
j

tr
(
H ′(:, j)H ′(:, j)T

)
=
∑
j

||H ′(:, j)||22 ≤ n− r,

since ||H ′(:, j)||2 ≤ ||H ′(:, j)||1 ≤ 1. Finally, using the singular value perturbation theorem
(Weyl; see, e.g., [20]), we have

σp([Ir,H
′)− ||N ||2 ≤ σp([Ir,H

′] +N) ≤ σp([Ir,H
′) + ||N ||2

for p = min or max, and since ||N ||2 ≤ δ < 1, we obtain

κ
(
[Ir,H

′] +N
) ≤ √1 + n− r + δ

1− δ
.

This bound allows us to provide a robustness analysis of prewhitening.
Theorem 3.4. Let X̃ = X + N , where X satisfies Assumption 1 with m = r, W has full

rank, and the noise N satisfies maxj ||N(:, j)||2 ≤ ε. If ε < O( σmin(W )

(n−r+1)3/2
√
r

)
, prewhitened SPA

identifies the columns of W up to error O ((n− r + 1)3/2εκ(W )
)
.
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Proof. This follows from Corollary 1.2 and Lemma 3.3. We have

||N ′||2 = ||W−1N ||2 ≤ ||N ||2
σmin(W )

≤
√
nmaxj ||N(:, j)||2

σmin(W )
≤ ε

√
n

σmin(W )
≤ O

(
1

n

)
,

and as a result, Lemma 3.3 can be applied to obtain κ(QW ) ≤ O(√n− r + 1) for prewhiten-
ing. By plugging the above bound into Corollary 1.2, Theorem 3.4 is obtained.

The bounds of Theorem 3.4 are tight. In fact, if, except for the pure pixels, all pixels
contain the same endmember, say the kth, then all columns of H ′ are equal to the kth column
of the identity matrix, that is, H ′(:, j) = Ir(:, k) := ek for all j. Therefore,

κ (Y ) = κ
(
[Ir,H

′]
)
=
√
1 + n− r

since Y Y T = (Ir +H ′H ′T ) = Ir + (n − r)eke
T
k is a diagonal matrix with (Y Y T )ii = 1 for all

i �= k and (Y Y T )kk = 1 + n− r.
This indicates that prewhitening should perform the worst when one endmember contains

most pixels, as this matches the upper bound of Theorem 3.4. However, if the pixels are
relatively well spread in the convex hull of the endmembers, then prewhitening may perform
well. This will be proved in the next subsection, wherein the robustness of prewhitening under
a standard generative model is analyzed.

3.4. Robustness under a standard generative model. We continue our analysis by con-
sidering a standard generative model in HU. We again consider m = r, and the generative
model is described as follows.

Assumption 2. The near-separable matrix X̃ = WH +N is such that the following hold.
(i) W is of full rank.
(ii) H(:, j) is independent and identically distributed (i.i.d.) following a Dirichlet distri-

bution with parameter ρ = (ρ1, . . . , ρr) > 0 for all j. Also, without loss of generality,
it will be assumed that ρ1 ≥ ρ2 ≥ · · · ≥ ρr.

(iii) N(:, j) is i.i.d. with mean zero and covariance E
[
N(:, j)N(:, j)T

]
= σ2

NI for all j
(Gaussian noise).

(iv) The number of samples goes to infinity; that is, n→∞.
Note that assumption (ii), which models the abundances as being Dirichlet distributed,

is a popular assumption in the HU context; see, e.g., [31]. In particular, the parameter ρ
characterizes how the pixels are spread. To describe this, let us consider a simplified case
where β := ρ1 = · · · = ρr, i.e., symmetric Dirichlet distribution. We have the following
phenomena: if β = 1, then H(:, j)’s are uniformly distributed over the unit simplex; if β < 1
and β decreases, then H(:, j)’s are more concentrated around the vertices (or pure pixels) of
the simplex; if β > 1 and β increases, then H(:, j)’s are more concentrated around the center
of the simplex. In fact, β → 0 means that H(:, j)’s contain only pure pixels in the same
proportions. It should also be noted that we do not assume the separability or pure-pixel
assumption, although the latter is implicitly implied by Assumption 2. Specifically, under
assumptions (ii) and (iv), for every endmember there exist pixels that are arbitrarily close to
the pure pixel in a probability one sense.

Now, our task is to prove a bound on κ(QW ) under the above statistical assumptions,
thereby obtaining implications on how prewhitened SPA may perform with respect to the
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abundances’ distribution (rather than in the worst-case scenario). To proceed, we formulate
the prewhitening preconditioner as

Q = R−1/2, where R =
1

n
X̃X̃T =

1

n

n∑
j=1

X̃(:, j)X̃(:, j)T .

For n→∞, we have

R = E

[
X̃(:, j)X̃(:, j)T

]
.

Also, under Assumption 2, the above correlation matrix can be shown to be

E

[
X̃(:, j)X̃(:, j)T

]
= WΦW T + σ2

NI,

where Φ = E
[
H(:, j)H(:, j)T

]
. We have the following lemma.

Lemma 3.5. Under Assumption 2, the matrix Φ = E
[
H(:, j)H(:, j)T

]
is given by

(3.2) Φ =
1

ρ0(ρ0 + 1)

(
D + ρρT

)
,

where D = Diag(ρ1, . . . , ρr) and ρ0 =
∑r

i=1 ρi. Also, the largest and smallest eigenvalues of
Φ are bounded by

λmax(Φ) ≤ u :=
ρ1 + ||ρ||22
ρ0(ρ0 + 1)

and λmin(Φ) ≥ � :=
ρr

ρ0(ρ0 + 1)
.

Proof. It is known that for a random vector x ∈ R
r following a Dirichlet distribution of

parameter ρ, its means and covariances are given, respectively, by

E[xi] =
ρi
ρ0

and cov[xi, xj ] =

{ − ρiρj
ρ20(ρ0+1)

if i �= j,
ρi(ρ0−ρi)
ρ20(ρ0+1)

if i = j.

From the above results, we get

Φii = E[x2i ] =

(
ρi
ρ0

)2

+
ρi(ρ0 − ρi)

ρ20(ρ0 + 1)
=

ρ2i + ρi
ρ0(ρ0 + 1)

and, for i �= j,

Φij = E[xixj] =
ρiρj
ρ20
− ρiρj

ρ20(ρ0 + 1)
=

ρiρj
ρ0(ρ0 + 1)

,

which lead to (3.2). The bounds on the eigenvalues follow from the fact that for any A,B ∈ Sr,
λmax(A+B) ≤ λmax(A) + λmax(B) and λmin(A+B) ≥ λmin(A) + λmin(B).

From Lemma 3.5, we deduce the following result.
Theorem 3.6. Consider preconditioning via prewhitening. Under Assumption 2, the con-

dition number of QW is bounded by

κ(QW ) ≤ κ(W )

√
uσ2

min(W ) + σ2
N

� σ2
max(W ) + σ2

N

,
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where

u =
ρ1 + ||ρ||22
ρ0(ρ0 + 1)

and � =
ρr

ρ0(ρ0 + 1)
.

Proof. By Lemma 3.5, we have that

�WW T + σ2
NI �WΦW T + σ2

N I � uWW T + σ2
NI.

Hence we have that
(
uWW T + σ2

NI
)−1 � (WΦW T + σ2

NI
)−1 � (�WW T + σ2

N I
)−1

. Con-

sider W TQTQW = W T
(
WΦW T + σ2

NI
)−1

W . Letting W = UΣV T be the SVD of W , we
obtain

W TQTQW �W T
(
�WW T + σ2

N I
)−1

W

= V ΣUT
(
U(�Σ2 + σ2

NI)UT
)−1

UΣV T

= V Σ
(
�Σ2 + σ2

NI
)−1

ΣV T

= V

⎛
⎜⎜⎜⎝

. . .
σ2
i (W )

	σ2
i (W )+σ2

N

. . .

⎞
⎟⎟⎟⎠V T .

Hence σ2
max(W )

	σ2
max(W )+σ2

N
is an upper bound for the largest eigenvalue of W TQTQW . Using the same

trick, we obtain
σ2
min(W )

uσ2
min(W )+σ2

N
as a lower bound for the smallest eigenvalue ofW TQTQW , which

gives the result.
Combining Corollary 1.2 with Theorem 3.6 implies the robustness of prewhitening com-

bined with SPA under the aforementioned generative model. It is particularly interesting to
observe that, assuming σmin(W )� σN , we have

(3.3) κ(QW ) � κ(W )

√
uσ2

min(W )

� σ2
max(W )

=

√
u

�
=

√
ρ1 + ||ρ||22

ρr
.

As can be seen, the approximate bound above does not depend on the conditioning of W—
which is appealing when we plug it into Corollary 1.2 to obtain its provable SPA error bound.
That said, one should note that ρ, which characterizes how the abundances are spread, plays
a role. To get more insight, consider again the symmetric distribution case β := ρ1 = · · · = ρr.
Equation (3.3) reduces to

κ(QW ) �

√
β + rβ2

β
=
√

1 + rβ.

We see that fixing r, a smaller (respectively, larger) β implies an improved (respectively,
degraded) bound—which is quite natural since β controls the concentration of data points
around the vertices (or pure pixels). It is also interesting to look at the asymmetric distribution
case. Specifically, consider an extreme case where we fix ρ1, . . . , ρr−1 and scale ρr to a very
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small value. Physically, this means one endmember is present in very small proportions in the
data set—a scenario reminiscent of the worst-case scenario identified by the tight robustness
analysis in the last subsection. Then, from (3.3), one can see that the bound worsens as ρr
decreases. In fact, as ρr goes to zero, the rth endmember progressively disappears from the
data set and hence cannot be recovered: for ρr → 0, (3.3) becomes unbounded, which matches
the result in Theorem 3.4 for n→∞ (in a worst-case scenario).

To conclude, SPA preconditioned by prewhitening can yield good performance if the abun-
dances are more uniformly spread and a good population of them is close to the pure pixels.
On the other hand, one will expect deteriorated performance if one of the endmembers exhibits
little contributions in the data set or if most of the pixels are heavily mixed.

4. SPA-based heuristic preconditioning. As discussed previously, the intuition behind
designing a good preconditioner is to find the left inverse W † of W in the ideal case or to
efficiently approximateW † in practice. This reminds us that the original SPA (or SPA without
preconditioning) can extract W exactly in the noiseless case and approximately in the noisy
case (Theorem 1.1). Hence, a possible heuristic, which has been explored in [17], is as follows:

1. Identify approximately the columns of W among the columns of X̃ using SPA; that
is, identify an index set K such that W ≈ X̃(:,K) (note that other pure-pixel search
algorithms could be used).

2. Compute X̃(:,K)† = (X̃(:,K)T X̃(:,K))−1
X̃(:,K)T (this is prewhitening of X̃(:,K)).

The computational cost is that of SPA, which requires 2mnr +O(mr2) operations [18], plus
that of the SVD of X̃(:,K), which requires O(mr2) operations. Hence, this SPA-based pre-
conditioning is simple and computationally very efficient. Our interest with the SPA-based
preconditioning is fundamental. We will draw a connection between the SPA-based precondi-
tioning and the (arguably ideal) SDP-based preconditioning. Then, a robustness analysis will
be given.

Note that, form = r, the preconditioning is given by X̃(:,K)−1, while
(
X̃(:,K)X̃(:,K)T )−1

is the optimal solution of

P ∗ = argmax
P∈Sr+

det(P ) such that x̃j
TPx̃j ≤ 1 ∀ j ∈ K;(4.1)

see [19, Thm. 4] (this also follows from Lemma 3.1). Hence our heuristic can be seen as a
relaxation of the SDP (1.1) where we have selected a subset of the constraints using SPA.
Moreover, by letting A∗ be the optimal solution of (1.1), we have

det(P ∗) ≥ det(A∗).

Therefore, we can easily provide an a posteriori robustness analysis, observing that

det(P ∗) ≥ det(A∗) ≥ det

(
P ∗

maxj x̃j
TP ∗x̃j

)

since P ∗
maxj x̃j

TP ∗x̃j
is a feasible point of (1.1). Therefore, by denoting β = maxj x̃j

TP ∗x̃j, 1
βP

∗

is a 1
βr -approximate solution of SDP (1.1), and we can apply Theorem 2.6.
Remark 1. Note that the active set method for (1.1) proposed in [19] implicitly uses the

above observation. In fact, the set of initial constraints was selected using SPA and updated
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by adding the most violated constraints at each step (that is, the constraints corresponding
to the largest x̃j

TP ∗x̃j).
We have observed that extracting more than r columns with SPA sometimes gives a

better preconditioning. Intuitively, extracting more columns allows one to better assess the
way the columns of X̃ are spread in space: at the limit, if all columns are extracted, this
is exactly Algorithm NF-PW. Hence we have added a parameter r ≤ p ≤ min(m,n); see
Algorithm SPA-Prec. Note that SPA cannot extract more than rank(X̃) indices. Therefore,
in the noiseless case (rank(X̃) = r), the SPA-based preconditioning performs perfectly for any
p ≥ r.

Algorithm SPA-Prec – SPA-based Preconditioning [17].

Input: Matrix X̃ = X + N with X satisfying Assumption 1, rank r, parameter r ≤ p ≤
min(m,n).

Output: Preconditioner Q.

1: K = SPA(X̃, p).

2: Q = NF-PW
(
X̃(:,K), r

)
.

SPA-Prec can be used to make pure-pixel search algorithms more robust, e.g., SPA. It is
kind of surprising: one can use SPA to precondition SPA and make it more robust.

4.1. Robustness analysis. We can provide the following robustness results for SPA pre-
conditioned with SPA.

Theorem 4.1. Let X̃ = X + N , where X satisfies Assumption 1 with m = r, W has full
rank, and the noise N satisfies maxj ||N(:, j)||2 ≤ ε. If ε ≤ O( σmin(W )√

rκ2(W )

)
, then SPA-based

preconditioned SPA identifies the columns of W up to error O (ε κ(W )).

Proof. Let us denote W̃ = X̃(:,K) ∈ R
r×r to be the matrix extracted by SPA so that the

SPA-based preconditioning is given by Q = W̃−1. Hence, using Corollary 1.2, it remains to
prove that

κ (QW ) = κ
(
W̃−1W

)
= κ

(
W−1W̃

)
= O(1).

Let us assume without loss of generality that the columns of W̃ are properly permuted (this
does not affect the preconditioning) so that, by Theorem 1.1, we have E = W − W̃ , where

max
j
||E(:, j)||2 ≤ O

(
εκ(W )2

) ≤ O(σmin(W )√
r

)
.

This implies that ||E||2 ≤ O (σmin(W )). By denoting (U,ΣW , V ) to be the SVD of W , we
have

W−1W̃ = V Σ−1
W UT (UΣWV T + E) = Ir + V Σ−1

W UTE.

Denoting A = V Σ−1
W UTE, we also have

κ(W−1W̃ ) ≤ 1 + σmax(A)

1− σmax(A)
,
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where ||V Σ−1
W UTE||2 ≤ ||Σ−1

W ||2||E||2 = σmin(W )−1||E||2 ≤ O(1), which gives the result. The
above bound on the condition number follows from the singular value perturbation theorem;
see, e.g., [20, Cor. 8.6.2], which states that, for any square matrix A = B − B′, we have
|σi(B)− σi(B

′)| ≤ σmax(A) for all i.

It is interesting to notice the following.

• SPA-based preconditioned SPA improves the error bound of SPA by a factor κ(W ).
• The theoretical result for SPA-based preconditioned SPA (Theorem 4.1) does not

allow higher noise levels than SPA. However, in practice, it will allow much higher
noise levels; see the numerical experiments in section 5.

• SPA-based preconditioned SPA has the same robustness as postprocessed SPA [3] (see
also [19] for a discussion), although SPA-based preconditioned SPA is computationally
slightly cheaper (postprocessed SPA requires r orthogonal projections onto (r − 1)-
dimensional subspaces). Moreover, postprocessed SPA was shown to perform only
slightly better than SPA [19], while SPA-based preconditioned SPA will outperform
SPA (in particular, this applies to the synthetic data sets described in section 5.2).

• The procedure can potentially be used recursively, that is, use the solution obtained
by SPA preconditioned with SPA to precondition SPA. However, we have not ob-
served significant improvement in doing so, and the error bound that can be derived
is asymptotically the same as for a single-pass SPA-based preconditioning. In fact,
Theorem 4.1 can be easily adapted: the only difference in the proof is that the upper
bound for ||E||2 would be better, from O (σmin(W )) to O(σmin(W )

κ(W )

)
, which does not

influence κ(W−1W̃ ) being in O(1).
5. Numerical experiments. In this section, we compare the following algorithms:

• SPA. The successive projection algorithm; see Algorithm SPA.
• SDP-SPA. Algorithm SDP-Prec + SPA.
• PW-SPA. Algorithm NF-PW + SPA.
• SPA-SPA. Algorithm SPA-Prec (p = r) + SPA.
• VCA. Vertex component analysis (VCA) [30], available from http://www.lx.it.pt/

∼bioucas.
• XRAY. Fast conical hull algorithm, “max” variant [24].

The MATLAB code is available from https://sites.google.com/site/nicolasgillis/. For SPA,
VCA, and SDP-SPA, we used the original code of the authors. (Note that the SDPs are
solved via an active set method where the SDP subproblems are solved with interior point
methods using the parser-solver CVX [21].) For XRAY, we used the code from [16] (as it was
not made available by the authors). All tests are performed using MATLAB on a laptop with
Intel CORE i5-3210M 2.5GHz CPU and with 6GB RAM.

Table 1 summarizes the theoretical results for SPA and its preconditioned variants.

5.1. Two-by-three near-separable matrix. In this subsection, we illustrate the effective-
ness of the preconditionings on a small near-separable matrix: let

W =

(
k + 1 k
k k + 1

)

http://www.lx.it.pt/~bioucas
http://www.lx.it.pt/~bioucas
https://sites.google.com/site/nicolasgillis/
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Table 1
Robustness and computational cost of the different preconditionings. The best performances are highlighted

in bold. The algorithm α-SDP-SPA refers to SPA preconditioned with an α-approximate solution of (1.1) (see
section 2), while PW-SPA + model refers to PW-SPA where the generative model is Dirichlet with parameter
ρ plus Gaussian noise N where σmax(N) � σmin(W ) (see section 3.4).

Noise level (ε) Error Comp. Reference

= O
(

σmin(W )√
r

)
· = O (εκ(W )) · cost

SPA κ−2(W ) κ(W ) O(mnr) [18, Thm. 3]

SDP-SPA r−1 1 Ω(mnr2) [19, Thm. 2.9]

α-SDP-SPA min
(
r−1, α3/2

)
α−3/2 Ω(mnr2) Theorem 2.6

PW-SPA n−3/2 n3/2 O(mnr2) Theorem 3.4

PW-SPA + model
(

ρ1+||ρ||22
ρr

)−3/2 (
ρ1+||ρ||22

ρr

)3/2

O(mnr2) Theorem 3.6

SPA-SPA κ−2(W ) 1 O(mnr) Theorem 4.1

for some parameter k ≥ 0. We have that σmin(W ) = 1 and σmax(W ) = 2k + 1, and hence
κ(W ) = 2k + 1. Let us also take

(5.1) H =

(
1 0 0.5
0 1 0.5

)
, X̃ = WH +N,

with N = δ [−W (:, 1), −W (:, 2), WH(:, 3)]. Under the above setup, the following phenomena
can be shown: for δ ≥ 1

8k2
, we have ||X̃(:, 1)||22 = ||X̃(:, 2)||22 < ||X̃(:, 3)||22. Subsequently, SPA

will extract X̃(:, 3) as an endmember estimate, which is wrong. To show this, note that

||X̃(:, 1)||2 = ||X̃(:, 2)||2 = (1− δ)
√

2k2 + 2k + 1

while

||X̃(:, 3)||2 = (1 + δ)

√
2k2 + 2k +

1

2
.

The condition ||X̃(:, 1)||22 = ||X̃(:, 2)||22 < ||X̃(:, 3)||22 happens when

δ ≥ 1

8k2
>

√
2k2 + 2k + 1−

√
2k2 + 2k + 1

2

√
2k2 + 2k + 1 +

√
2k2 + 2k + 1

2

,

where the second inequality is obtained via

√
2k2 + 2k + 1 +

√
2k2 + 2k +

1

2
> 2k

and √
2k2 + 2k + 1−

√
2k2 + 2k +

1

2
<

1

4k
.

(The second inequality can be obtained by multiplying the left- and right-hand sides by√
2k2 + 2k + 1+

√
2k2 + 2k + 1

2 .) Also, it can be shown that, for any k, SDP-SPA will extract
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the columns of W correctly, with error proportional to O(δk) for δ ≤ O(1). Figure 1 displays
the fraction of columns of W properly identified by the different algorithms for different value
of δ: on the left for k = 10 and on the right for k = 1000.

Figure 1. Comparison of the different near-separable NMF algorithms on the matrix from (5.1) with k = 10
(left) and k = 1000 (right).

As explained above, SPA fails to properly identify the two columns of W for any δ ≤
O(k−2), while SDP-SPA works perfectly for δ ≤ O(1). It turns out that all preconditioned
variants perform the same, while XRAY performs the same as SPA. VCA is not deterministic,
and different runs lead to different outputs. In fact, potentially any column of X̃ can be
extracted by VCA for δ > 0.

5.2. Middle point experiment. In this subsection, we use the so-called middle point
experiment from [18], with m = 40, r = 20, and n = 210. The input matrix satisfies
Assumption 1, where each entry of W is generated uniformly at random in [0,1] and H ′

contains only two nonzero entries equal to 0.5 (hence all data points are in the middle of two
columns of W ). The noise moves the middle points toward the outside of the convex hull of
the columns of W with N(:, j) = δ (X(:, j) − w̄), where w̄ = 1

r

∑r
k=1W (:, k) and δ is the noise

parameter; see [18] for more details.

For each noise level (from 0 to 0.6 with step 0.01), we generate 25 such matrices, and
Figure 2 and Table 2 report the numerical results.

We observe that SPA-SPA is able to improve the performance of SPA significantly: for
example, for the noise level δ = 0.4, SPA correctly identifies about 20% of the columns of W ,
while SPA-SPA identifies about 95%. Note that SPA-SPA is only slightly faster than PW-SPA
because (i) m is not much larger than r, and (2) as opposed to SPA-SPA, PW-SPA actually
does not need to compute the product QX̃ where Q is the preconditioning since QX̃ = V T

r .
For large m and n, SPA-SPA will be much faster (see the next section for an example). Note
also that PW-SPA performs very well (in fact, as well as SDP-SPA) because the data points
are well spread in the convex hull of the columns of W , and hence κ(H) is close to one (in
fact, it is equal to 1.38, while the average value of κ(W ) is around 22.5).
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Figure 2. Comparison of the different near-separable NMF algorithms on the middle point experiment.

Table 2
Robustness (that is, the largest value of δ for which all columns of W are correctly identified) and total

running time in seconds of the different near-separable NMF algorithms.

Robustness Total time (s.)

SPA 0.08 4
SDP-SPA 0.45 3508
PW-SPA 0.45 34
SPA-SPA 0.39 31

VCA 0 841
XRAY 0.18 743

5.3. Hubble telescope. We use the simulated noisy Hubble telescope hyperspectral image
from [33] (with m = 100 and n = 16384) constituted of eight endmembers (see Figure 3).
Table 3 reports the running time and the mean-removed spectral angle (MRSA) between the
true endmembers (of the clean image) and the extracted endmembers. Given two spectral
signatures, x, y ∈ R

m, the MRSA is defined as

φ(x, y) =
100

π
arccos

(
(x− x̄)T (y − ȳ)

||x− x̄||2||y − ȳ||2

)
∈ [0, 100].

Figure 3 displays the abundance maps corresponding to the extracted columns of W .

All preconditioned variants are able to identify the eight materials properly, as opposed
to the original SPA. SPA-SPA performs slightly better than the other preconditioned variants
while being the fastest. We do not show the results of VCA and XRAY, as they perform very
poorly [19].

6. Conclusion and further research. In this paper, we analyzed several precondition-
ings for making pure-pixel search algorithms more robust to noise: an approximate SDP,
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Figure 3. The abundance maps corresponding to the endmembers extracted by the different algorithms.
From top to bottom: SPA, SDP-SPA, PW-SPA, SPA-SPA. From left to right: honeycomb side, copper stripping,
green glue, aluminum, solar cell, honeycomb top, black rubber edge, and bolts.

Table 3
MRSA of the identified endmembers with the true endmembers and running time in seconds of the different

preconditioned SPA algorithms.

SPA SDP-SPA PW-SPA SPA-SPA

Hon. side 6.51 6.94 6.94 6.15
Cop. strip. 26.83 7.46 7.44 7.44
Green glue 2.09 2.03 2.03 2.03
Aluminum 1.71 1.80 1.80 1.80
Solar cell 4.96 5.48 5.48 4.96
Hon. top 2.34 2.30 2.30 2.30
Black edge 27.09 13.16 13.16 13.13

Bolts 2.65 2.65 2.65 2.70

Average 9.27 5.23 5.23 5.06

Time (s.) 0.05 4.74 2.18 0.37

prewhitening, and a simple and fast yet effective SPA-based preconditioning. The analyses
revealed that these preconditionings, which aim at low-complexity implementation and are
suboptimal compared to the ideal SDP preconditioning, actually have provably good error
bounds on pure-pixel identification performance.

Further research includes the following tasks:

• Evaluate the preconditionings on real-world hyperspectral images. We have performed
preliminary numerical experiments on real-world hyperspectral images and did not
observe significant advantages when using the different preconditionings. A plausible
explanation is that the noise level in such images is usually rather large (in particular
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larger than the bounds derived in the theorems) and these images contain outliers.
Hence, to make preconditionings effective in such conditions, some preprocessing of
the data would be necessary, in particular outlier identification, since pure-pixel search
algorithms are usually very sensitive to outliers (e.g., VCA, SPA, and XRAY).

• Use the preconditioning to enhance other blind HU algorithms, for example algorithms
which do not require the pure-pixel assumption to hold; see, e.g., [26, 9, 6].

• Analyze theoretically and practically the influence of preconditioning on other pure-
pixel search algorithms. For example, the results of this paper directly apply to the
successive nonnegative projection algorithm (SNPA), which is more robust and applies
to a broader class of matrices (W does not need to be full rank) than SPA [15].

Appendix A. Proof of Lemma 2.4. We have to prove that

κ∗ =
1 +

√
1− γ

(
r
β

)r
1−
√
1− γ

(
r
β

)r

is the optimal value of maxλ∈Rr
λ1
λr

such that
∑

i λi ≤ β,
∏

i λi ≥ γ, and λ1 ≥ · · · ≥ λr ≥ 0,
where β ≥ r and 0 < γ ≤ 1. Note first that the problem is feasible taking λi = 1 for all i.

At optimality, the constraint
∑

i λi ≤ β must be active (otherwise λ1 can be increased to
generate a strictly better solution), the constraint

∏
i λi ≥ γ must also be active (otherwise

λr can be decreased to obtain a strictly better solution), and λi > 0 for all i (otherwise the
solution is infeasible since γ > 0).

The feasible domain is compact, and the objective function is continuous and bounded
above: in fact, λi ≤ β and λi ≥ γ

βr−1 for all i, and hence κ∗ ≤ βr

γ . Therefore, the maximum

must be attained (extreme value theorem). Let λ∗ be an optimal solution.

For r = 2, λ∗ must satisfy λ∗
1 + λ∗

2 = β, λ∗
1λ

∗
2 = γ, and λ∗

1 ≥ λ∗
2, and hence λ∗

1 =
β
2

(
1 +
√

1− γ 4
β2

)
and λ∗

2 =
β
2

(
1−
√

1− γ 4
β2

)
, which gives the result.

For r ≥ 3, let us show that λ∗
i = λ∗

i+1 for all 2 ≤ i ≤ r − 2. Assume λ∗
i > λ∗

i+1 for some
2 ≤ i ≤ r − 2. Replacing λ∗

i and λ∗
i+1 by their average will keep their sum constant while

strictly increasing their product; hence this generates another optimal solution, a contradiction
since the constraint

∏
i λi ≥ γ must be active at optimality. Therefore, the above optimization

problem is equivalent to

(A.1)

κ∗ = max
x∈R3

x1
x3

such that x1 + (r − 2)x2 + x3 = β,

x1x
r−2
2 x3 = γ, and

x1 ≥ x2 ≥ x3 ≥ 0.

Let us consider a relaxation of the above problem by dropping the constraint x1 ≥ x2 ≥ x3 ≥ 0;
it will be shown that the solution of the relaxed problem satisfies the constraints automatically.
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The first-order optimality conditions of the relaxed problem are given by

1

x3
= λ+ μxr−2

2 x3 = λ+ μ
γ

x1
,

0 = λ(r − 2) + μ(r − 2)xr−3
2 x1x3 = (r − 2)

(
λ+ μ

γ

x2

)
,

−x1
x23

= λ+ μxr−2
2 x1 = λ+ μ

γ

x3
,

where λ and μ are the Lagrangian multipliers for the first and second constraints of (A.1),
respectively. Multiplying the first equality by x1 and the third by x3 and summing them up
gives

x1 + x3 =
−2μγ
λ

.

Multiplying the second equality by x2 gives x2 = −μγ
λ , and hence x2 = x1+x3

2 . This gives

x1+(r−2)x1+x3
2 +x3 = β, and hence x1+x3 = 2β

r , which combined with x1
(
x1+x3

2

)r−2
x3 = γ

gives x1x3 = γ
(
r
β

)r−2
. Finally, the solution is given by

x∗1 =
β

r

(
1 +

√
1− γ

(
r

β

)r
)
, x∗3 =

β

r

(
1−
√

1− γ

(
r

β

)r
)
,

and x∗2 =
x∗
1+x∗

3
2 . It can be seen that for β ≥ γ and 0 < γ ≤ 1, we have x∗1 ≥ x∗2 ≥ x∗3 ≥ 0,

which satisfies the third constraint of (A.1) automatically. Hence, the (x∗1, x∗2, x∗3) above is the
optimal solution of (A.1).
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[30] J. M. P. Nascimento and J. M. Bioucas-Dias, Vertex component analysis: A fast algorithm to unmix

hyperspectral data, IEEE Trans. Geosci. Rem. Sens., 43 (2005), pp. 898–910.

http://cvxr.com/cvx/


1186 NICOLAS GILLIS AND WING-KIN MA

[31] J. M. P. Nascimento and J. M. Bioucas-Dias, Hyperspectral unmixing based on mixtures of Dirichlet
components, IEEE Trans. Geosci. Rem. Sens., 50 (2012), pp. 863–878.

[32] P. Paatero and U. Tapper, Positive matrix factorization: A non-negative factor model with optimal
utilization of error estimates of data values, Environmetrics, 5 (1994), pp. 111–126.

[33] V. P. Pauca, J. Piper, and R. J. Plemmons, Nonnegative matrix factorization for spectral data anal-
ysis, Linear Algebra Appl., 406 (2006), pp. 29–47.

[34] P. Sun and R. M. Freund, Computation of minimum-volume covering ellipsoids, Oper. Res., 52 (2004),
pp. 690–706.

[35] J. Yang, D. Sun, and K.-C. Toh, A proximal point algorithm for log-determinant optimization with
group lasso regularization, SIAM J. Optim., 23 (2013), pp. 857–893.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


